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ABSTRACT
When human partners attend to peripheral computing devices
while interacting with conversational robots, the inability of
the robots to determine the actual engagement level of the
human partners after gaze shift may cause communication
breakdown. In this paper, we propose a real-time perception
model for robots to estimate human partners’ engagement dy-
namics, and investigate different robot behavior strategies to
handle ambiguities in humans’ status and ensure the flow of
the conversation. In particular, we define four novel types of
engagement status and propose a real-time engagement infer-
ence model that weighs humans’ social signals dynamically
according to the involvement of the computing devices. We
further design two robot behavior strategies (explicit and im-
plicit) to help resolve uncertainties in engagement inference
and mitigate the impact of uncoupling, based on an anno-
tated human-human interaction video corpus. We conducted a
within-subject experiment to assess the efficacy and usefulness
of the proposed engagement inference model and behavior
strategies. Results show that robots with our engagement
model can deliver better service and smoother conversations
as an assistant, and people find the implicit strategy more
polite and appropriate.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User In-
terfaces - interaction styles.: H.1.2 Models and Principles:
User/Machine Systems - human factors. I.2.9 Robotics.

Author Keywords
Human-Robot Interaction; Engagement Awareness;
Peripheral Computing Devices; Robot Behaviors.

INTRODUCTION
The use of computing devices, e.g., Personal Computers (PC),
mobile phones, wearable devices, in peripheral settings during
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Figure 1: One participant is using the laptop while still main-
tains interaction with the robot

face-to-face communication has become common in our daily
life. These peripheral devices can potentially influence the
quality of our conversations [27]. For example, when talking
with friends, we may occasionally search for information on
our phones, or attend to notifications from social media ap-
plications. In these scenarios, our partners may notice such
attention shift, and react accordingly, e.g., raising their voice,
or pausing until our attention comes back, to prevent possible
communication breakdowns.

Similar situations could happen in Human-Robot Interaction
(HRI) with the presence of peripheral computing devices, as
shown in Figure 1. If the robot cannot tell whether people are
still engaged and fails to make proper responses, the interac-
tion flow may be interrupted, leading to potential information
loss for human participants.

However, perceiving human partners’ engagement dynamics
and making proper reactions for robots are challenging. First,
when human participants suddenly allocate their attention to
peripheral computing devices, the intention is unclear to the
robots and the consequent engagement status is ambiguous.
For example, when people start to type in laptops, they may
be taking relevant notes of the conversation, or replying to
irrelevant emails. In the former case, the human participants
may still listen to the robots and remain engaged in the con-
versation, while in the latter, they might be completely out of
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the loop. In other words, different intentions of using comput-
ing devices may lead to engagement ambiguities for robots to
handle, which is often overlooked in previous research.

Second, for robots, behaving appropriately based on differ-
ent engagement status of human partners is also a non-trivial
task. For instance, the robots can either wait until the humans’
attention comes back or actively raise their voices to regain
their human partners’ attention. Different strategies may result
in disparate human perceptions towards their robot partners,
which may ultimately have an impact on the quality of the
communication. In interpersonal interactions, people have for-
mulated various strategies to make the conversation smoother
and more effective [13]. However, whether and how robots
can adopt these similar strategies is still under investigated.

In this paper, we consider the computing devices as social be-
ings which can compete for humans’ attention with robots. Un-
der this assumption, we define four new types of engagement
status based on the human participants’ social signals, such
as gaze, head pose, and voice. The new types of engagement
status offer a fine-grained description of humans’ engagement
dynamics. We further build a real-time engagement inference
model, which captures the inter-state transitions and adjusts
the weights on different social signals dynamically accord-
ing to the involvement of the computing devices. In addition,
based on behavioral coding results of a Human-Human Inter-
action video corpus in a similar configuration with peripheral
computing devices present, we design two behavior strategies
(explicit and implicit) for robots to handle the ambiguity prob-
lems and ensure successful Human-Robot communication. To
evaluate the effectiveness and usefulness of our model and
strategy designs, we conduct a within-subject user study of
HRI involving a laptop as the peripheral computing device
with 27 participants, and analyze their experiences and percep-
tions through questionnaires and interviews. The participants
reflect that the robots with our engagement inference model
can perceive their engagement status changes, and are capable
of mitigating potential communication breakdowns compared
to the one without. In addition, our analysis results reveal that
the robots with the implicit and explicit behavior strategies can
handle the information delivery tasks equally well; however,
the implicit robot is considered to be more polite and appropri-
ate. We also give some implications for behavior designs of
engagement-aware robots based on our experimental findings.

RELATED WORK

Peripheral Computing in Interpersonal Communication
The involvement of computing devices in interpersonal com-
munication has been studied for many years. Newman and
Smith [28] explored laptop usage in meeting scenarios. They
found that laptop users are more likely to drift their atten-
tion to less relevant tasks on the laptops, and have difficulty
in re-engaging the conversation. In their work, the comput-
ing devices, i.e., laptops, are regarded as distractions of the
communication. However, the computing devices can also
serve as the facilitators for smooth communication. For ex-
ample, Teevan et al. [39] designed a system that allows the
effective interaction between presenters and audiences. By

building channels to show real-time aggregated feedback of au-
diences through mobile phones, the presenters are dynamically
connected with the audience. And the audiences feel more
engaged when they can instantly provide feedback to the pre-
senter. Similarly, Mattias et al. [5] studied phone use during
meetings and explored its potential influence among attendees.
Through experiments in real meetings, they concluded that
proper using of smart phones can keep participants’ attention
on meeting-related tasks and the smart phones can achieve a
collaborative presence in meetings. In addition, Hoffman et
al. [15] showed that peripheral computing devices can also
enhance face-to-face interactions as an empathy-evoking sup-
plement. They designed an ambient lamp that can monitor and
respond to ongoing conversations on the side. Study showed
that participants find the lamp more as a companion than a
distraction to the interpersonal communication. Other similar
phenomena of using computing devices have also been studied
in education and family scenarios [10, 14, 2, 29], where the
pros and cons of computing device usage are widely discussed.

Over the years, researchers tried to explore human participants’
perceptions and responses to peripheral computing devices
in many different application scenarios. Some research on
augmented interactive room [17] and ambient displays [42]
showed that such systems can act as an additional informa-
tion channel that may divert users’ attention from the focus
tasks. Other studies explore the use of ordinary computing
devices in peripheral settings. Greatbatch et al. [13] consid-
ered computing devices in medical consultant scenarios and
described how patients coordinate their responses when doc-
tors are using computers. Their research suggests that patients
have the impulse to figure out doctor’s engagement status, e.g.,
asking for response, within a certain period. Iqbal et al. [16]
studied the usage of computing devices, e.g., mobile phones
and laptops, in presentations and explored the cost and atti-
tudes about the usage. They reported that audiences worry
about missing certain amount of information when using the
computing devices. And the presenters are concerned about
“whether the device is used in a positive way (e.g., taking
notes) or a negative way (e.g., distract by instant messages)".
Oduor et al. [29] reported people’s responses to the usage
of mobile devices in home settings. Their results show that
people tend to guess what activities the other members are
doing when they are using mobile devices. If the activities
are relevant to the conversation, e.g., searching locations for
family picnics when talking about weekend plans, the usage
of these devices is acceptable and beneficial. Otherwise, such
usage may lead to frustrations and breakdowns of the conver-
sation. All these studies on computing device usage yields an
insight into their influence on participants’ engagement status
in interpersonal communication. However, little research has
explored the effect of computing device usage in HRI. Pre-
vious research look mostly into multiparty HRI with a pure
face-to-face conversation, in reality, such HRI might involve
other computing devices which could complicate the situation.
First, the robot in HRI with computing devices situated has
no access to the content on these peripheral devices, making
it hard to assess their relevance to the on-going conversation.
However, the relevance may be inferred from the speeches of
human partners in multiparty face-to-face interaction. Second,
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the robot may have little clue on the start and end time of
the attention shift caused by the computing devices, while, in
multiparty interactions, such information can be predicted by
leveraging turn-taking signals. Furthermore, how the robot
should respond to human partner’s use of computing devices
to avoid potential communication breakdowns still remains
under investigated.

Engagement Measurements
In HRI community, engagement is defined as “the process by
which interactors start, maintain, and end their perceived con-
nections to each other during an interaction" [35]. Studies of
social and service robots, e.g., museum robots [45], bartender
robots [12], dialog agents [6], often assume full engagement
status from human participants during interaction and allow
few distractions from peripheral computing devices. Under
this assumption, previous research focused on different periods
of “engagement”, i.e., "start", "maintain" and "end", and pro-
posed multiple methods to infer engagement status of human
partners. Bohus et al. [6, 8] built forecasting models to predict
people’s intents to start or end the conversation in a situated di-
alog system. Yamazaki and other researchers [45, 38, 41, 24]
focused more on determining people’s willingness to maintain
the interaction in education and entertainment scenarios.

Most of existing engagement inference models take humans’
social signals, e.g., gaze, head pose, body orientation, etc., as
input. Among all the social signals, gaze is considered to be
one of the most efficient indicators [23]. And gaze related fea-
tures, like eye contact [44], gaze direction [18], gaze pattern
[25], are widely adopted to determine the engagement status
of human participants. But since the precise gaze estimation
requires expensive equipment, researchers have leveraged the
head pose as an alternative cue for engagement measurement
[31, 1, 3, 21, 41, 26, 34, 20]. Combining multiple cues to get
more accurate estimation of engagement is also adopted in [34,
7, 33, 43, 8, 4, 11], and such combination can provide better
engagement estimation than the gaze cue alone [33]. More-
over, some models also incorporate other interaction features,
e.g., contextual information [11], conversational history [30],
to further improve the engagement inference. However, one
potential drawback of the cue-combined methods is that the
weights of different cues are often fixed. When human partners
in HRI are fully engaged in the conversation, gaze and head
pose are the strongest indicators of their engagement status.
But if they divert their gaze to the peripheral computing de-
vices, the significance of gaze and head pose for engagement
may be downplayed by other cues, e.g., head motion (nodding,
etc.), voice feedback, and so on. With the fixed weights on
multiple cues, the conventional model can hardly tackle this
problem. Furthermore, most of the cue-based measurements
of engagement for human partners in HRI are binary [43],
(engaged or disengaged), or scaled (based on the engagement
strength [24]). Such binary or scaled measurements can hardly
describe the dynamic process of engagement. Engagement
is expected to “wax and wane" over the interaction [24], and
this is especially true when human participants are using com-
puting devices while still involved in the interaction. They
might repeatedly divert their attention between the devices

Figure 2: System overview.

and other participants, and dynamically modify their behav-
iors, e.g., nodding. In such situations, the engagement status
of human partners is changing, but it is difficult to infer the
corresponding binary values or scaled engagement strengths.

Ambiguity Handling Strategy Design
Ambiguity handling have been studied for decades. For exam-
ple, in spoken dialog system, the conversational agents may
encounter various ambiguities caused by understanding errors.
These uncertainties have a negative impact on the dialog per-
formance. If the dialog agents fail to respond appropriately, the
communication flows are likely to be disrupted. Researchers
in this domain have designed and evaluate multiple strategies
for the dialog agents. For example, Bohus and Rudnicky [9]
experimented 10 strategies, including repeat asking, further
inquiring, uncertainty claiming, etc., for the agents to resolve
error-induced ambiguity. Their results show that the further
inquiring can achieve the best performance. Marsi and Rooden
[22] designed audio-visual expressions, e.g., audio with fa-
cial expressions, as well as audio-alone expressions for the
embodied agent with a talking head to express confusions.
The comparison between the two expressions suggests that
the ambiguity can be more reliably resolved via audio-visual
expressions. Pejsa et al. [32] created two sets of strategies,
i.e., speaking policy and listening policy, to stress uncertainty
information for a situated conversational agent. The virtual
agent can choose policy based on the detected uncertainty
state. These studies concentrate on the dialog uncertainties
and consider more about the misunderstandings rather than
the engagement ambiguity. Yet the proposed strategies can be
inspiring for our robot strategy design.

MODEL AND SYSTEM DESIGN
In this section, we introduce our engagement inference model
and robot behavior generation in detail.

System Overview
Our system 1 consists of three components: Visual-auditory
Processing, Engagement Inference, and Behavior Generation,
1Downloadable in https://hcihkust.github.io/EngageDynamics/
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as shown in Figure 2. During the interaction with human
partners, the robot keeps capturing and analyzing human par-
ticipants’ social signals, e.g., head pose, voice, etc., in the
Visual-auditory Processing module. The results are then fed
into the Engagement Inference module, which infers human
engagement states in real time by adjusting the weights of the
detected social signals dynamically. These states are further
used in the Behavior Generation module to guide the robot’s
behaviors according to our predefined behavior codebook2.
The detailed descriptions of each module are presented in the
following subsections.

Visual-auditory Processing
The Visual-auditory Processing module exploits the toolkit
provided by Aldebaran3 to capture basic social signals, in-
cluding gaze direction, head pose and voice information. We
then extract high-level semantic social indicators, such as head
nodding Bheadnod, head shaking Bheadshake, direct gaze Bgaze,
and voice Bvoice, from the low-level social signals as follows:

Head nodding/shaking. We denote the head pose as v(t)
h =

[yaw(t), pitch(t), roll(t)], where yaw(t), pitch(t), roll(t) are yaw,
pitch, roll angles in the robot coordinate system at time t,
respectively. To detect head nodding indicator Bheadnod at time
t, we calculate the absolute deviation of pitch angles within
the past N data points: δnod = 1

N
∑N−1

n=0 |pitch(t−n)−µnod |, where
µnod = 1

N
∑N−1

n=0 pitch(t−n). In our experiment, we set N = 50
with sampling rate 25fps (frame per second) according to
the pilot study results. If δnod > 0.4, we set Bheadnod = 1,
otherwise Bheadnod = 0. Similarly, we use the yaw angles to
obtain the head shaking indicator and set Bheadshake = 1 if the
head shaking is detected, otherwise, Bheadshake = 0.

Direct gaze. We use the gaze indicator directly from Alde-
baran gaze analysis toolkit, which computes the gaze direction
angles [yaw(t), pitch(t)] relative to the plane of the participant’s
face. If the participant is looking at the robot, we set Bgaze = 1,
otherwise, Bgaze = 0.

Voice. We use a 20ms (millisecond) buffer to store the latest
raw sound segment. If the total energy of this buffer exceeds a
predefined threshold (obtained from the pilot study results), the
voice signal is assumed to be detected, Bvoice = 1, otherwise,
Bvoice = 0.

Engagement Inference
To reflect humans’ engagement dynamics, we define four en-
gagement states as shown in Figure 3 based on two sets of
clues. One is direct gaze, Bgaze, and the other is the collec-
tive non-gaze clues, B f eedback = Bheadnod ∨ Bheadshaking ∨ Bvoice,
where ∨ is the logical or operation. The four states, S1, S2,
S3 and S4, are defined as follows. The state S1 denotes that
the participants are fully engaged as they are looking at the
robot, Bgaze = 1, e.g., a in Figure 3. The state S2 denotes
that the human participant shifts gaze away, Bgaze = 0, but is
still engaged as indicated by the non-gaze feedback signals,
B f eedback = 1, e.g., b in Figure 3. The state S3 denotes that the
participants do not show any feedback signals, i.e., Bgaze = 0
2Downloadable in https://hcihkust.github.io/EngageDynamics/
3http://doc.aldebaran.com/2-1/naoqi/index.html

Figure 3: The engagement state S1, S2, S3 and S4. ∆t1, ∆t2
and ∆t3 are time duration of no feedback signals. Tval is a
predefined threshold (6 seconds) to trigger S3 to transit to S4.

Figure 4: The transitions of engagement states

and B f eedback = 0, for less than 6s (second), e.g., c in Fig-
ure 3. The state S4 denotes that the participant is assumed
to be disengaged, as no social feedback signals are detected,
i.e., Bgaze = 0 and B f eedback = 0, for more than 6s, e.g., d in
Figure 3.

We further introduce transitions between these predefined
states as illustrated in Figure 4 to explain the underlying princi-
ples of the engagement inference. In state S1, the participants’
engagement is most certain since they are looking at the robot.
From S1 to S2/S3, the gaze has been diverted and the robot has
to rely on the non-gaze cues to estimate participants’ engage-
ment. Thus, we put more weights on the non-gaze indicator
B f eedback. In other words, the non-gaze cues (head nodding,
head shaking, voice) are the only factor to differentiate whether
a participant is in S2 or S3. The robot will also assume the
participants to be engaged if any non-gaze cues are detected,
B f eedback = 1. Conversely, in state S1, more weights will be
put on the gaze indicator Bgaze, as the value of B f eedback has
little impact on this state.

If the participants do not look at the robot and provide no
other signals for a short while, i.e., in state S3, there are no
clear evidences to determine participants’ engagement. Given
that the next transition state of S3 could either be engaged,
e.g., S1 and S2, or disengaged, e.g., S4, the robot would need
additional information to better disambiguate the engagement
status in S3. Hence we design a set of handling strategies for
the robot, to which the participants’ reactions can provide more
clues to their actual engagement status, and may ultimately
affect the quality of the communication. In the following
subsection, we provide detailed descriptions of engagement
handling strategy design.
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Figure 5: Snapshots from our video corpus: (a) A raises the
hand to regain B’s attention. (b) speaker A slows down and
waits for B. (c) A turns around to look at B to make sure B is
fully engaged.

Behavior Generation
The Behavior Generation Module is designed to determine
what to do and how to do it when different states are detected.
Specifically, the robot should exercise state-sensitive behaviors
in S1, S2, S3 and S4 to make information delivery smoother
and more effective, especially when the engagement status is
ambiguous (in S3). To design appropriate behaviors for the
robot, we learn from Human-Human Interaction and adapt
human strategies in the following three steps.

First, we built a video corpus of multiparty work-related
Human-Human Interactions to extract engagement-related ac-
tions under different scenes. We shadowed two teams to record
their group meetings over a semester. Team A is a course
project team with four Master students in Human-Computer
Interaction, and Team B is an interest group of three facul-
ties and one Ph.D. student in Design and Human-Computer
Interaction. The final corpus, about 850min (minute) in total,
contains 17 videos that capture different scenes, such as project
planning, presentation rehearsal, design discussion, and meet-
ing arrangement. Some snapshots of the video corpus are
shown in Figure 5.

Second, we annotated human behaviors in the video corpus
based on a pre-compiled codebook. The codes consist of a
variety of essential verbal and non-verbal cues detectable by
existing sensors for estimating each conversational partici-
pant’s engagement status and others’ reactions. We construct
the initial codebook based on literature review, and further
refined it according to sample clips from our video corpus.
Table 1 shows examples of cue codes in the codebook. We
hired a professional video annotation service to code the par-
ticipants’ engagement status as defined in this paper and their
corresponding social signals based on this codebook. The
final version of the annotation consists of social signals, the
corresponding engagement status, the associated participants,
the context, the consequences and the time stamps. Figure 5
shows a few examples: (a) when person A is referring to an
important event while his partner B is looking at her laptop, A
may infer B is disengaged and thus raise his hand to regain B’s
attention. (b) The team is discussing their product roadmap
when person B suddenly attends to his laptop for a social mes-
sage, the speaker A therefore slows down and waits. (c) When
the speaker A starts an urgent event, he turns around to look at
his partner B to imply the importance. These provide essential

Cues Example codes
Gaze Mutual gaze, gaze sweeping...

Eye Movement Rapid blinking, looking up...
Head Movement Nod, shake, toss...
Head Orientation Turning around, lowering...

Gesture Pointing, returning to rest position...
Hand Movement Finger tapping, waving...
Body Orientation Turning towards, leaning forward...
Body Movement Stretching, blending...

Posture Mirroring, standing up...
Speech Greetings, questions, small talk...

Conjunctions yeah, OK, well...

Table 1: Cue codes in our codebook

insights into possible responses the robot should give under
the similar circumstances.

Third, by analyzing speakers’ behaviors when listeners are
possibly disengaged, we find two styles of behavior patterns,
perhaps due to different personalities and/or social roles. We
denote these two types of strategies as explicit and implicit,
respectively, based on our codebook. The explicit strategy
expresses views more openly and proactively, such as saying
“are your listening?”, raising hands to attract attention, etc.
The implicit strategy will express the speakers’ intents in a
submissive manner, such as pausing for a moment, saying
“I will wait for you”, etc. To evaluate the appropriateness
and effectiveness of these two strategies for HRI, we conduct
a comparative study with a control condition, unawareness,
which contains no behavior strategies when attention shifts are
detected. The detailed behavior manners of the above three
strategies are summarized in Table 2.

EXPERIMENT
In order to evaluate the capability of the proposed engagement
inference model and different behavior strategy designs, we
conduct a within-subject controlled experiment with 27 partic-
ipants. In this study, we measure the participants’ responses
and perceptions during dyadic conversations with a robot as-
sistant in work settings where peripheral computing devices
may sidetrack humans’ attention. More specifically, we use
the robot default mode without any behavior strategy as the
control condition, denoted as unawareness. We design two
versions of robot assistants with our engagement inference
model but employ different behavior strategies: explicit ver-
sus implicit (see section Model and System Design for more
details).

In the experiment, each participant interacts with three ver-
sions of robots separately to explore how well the robot can
handle engagement dynamics caused by the involvement of
peripheral computing devices. To minimize learning and or-
der effects, we counterbalance the order of the three designs
of robots as well as their assignments to three different sce-
narios in a work environment, i.e., Morning Report, Arrange
Meetings, and Daily Summary.

Table 3 shows the snippets of the scripts for different scenarios
and examples of responses from the three versions of robots
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Engagement States The Robot’s Behaviors
Explicit Implicit Unawareness

State S 1:
The user is looking at
the robot.

The robot talks without pauses The robot talks without pauses The robot talks
without pauses

State S 2:
The user stops looking
at the robot but shows
feedback signals.

The robot shifts its attention based on the
user’s head pose and begin talking slowly.

The robot shifts its attention
based on the user’s head pose
and begin talking slowly.

The robot con-
tinues talking
as before.

State S 3:
The user attends to the
laptop and shows no
feedback signals for a
short period.

The robot will wait for a while and then di-
rectly ask the user’s engagement, e.g., “Are
you still with me?”, “Are you listening?”,
“Are you following me?”, etc. Meanwhile,
the robot will also adjust its posture to the
partner when asking.

The robot will wait for a while
and then pop out filler words,
e.g., “Mmm”, “Uhm”, “Well”,
“Fine”. Meanwhile, the robot
will also move its head to follow
the user’s attention.

The robot con-
tinues talking
as before.

State S 4:
The user attends to the
laptop for quite a long
time without any feed-
back.

The robot will raise the hand to regain atten-
tion from the user, e.g., “Hey, listen to me,
it’s important!”, “Hey, you don’t want to miss
this information!”. After that the robot will
repeat the last few sentences.

The robot will stop the current
conversation and wait for the
user to finish the tasks by say-
ing “No problem, I will wait for
you.”, “OK, I will pause for a
moment.”, etc.

The robot con-
tinues talking
as before.

Table 2: The behavior strategies of our three versions of robot assistants under different engagement states.

Scenario Script Samples

Morning Report

“You have a meeting with Amy at
10am.”
“You will talk with Amy to decide
whether you are going to hike there.”

Arrange Meetings

“Davis wants to meet you at twelve
o’clock this Tuesday!”
“Dr. Wang emailed to confirm next
week’s meeting arrangement.’

Daily Summary
“Today you have finished your math as-
signments.” “You have to prepare for to-
morrow’s language course presentation.”

Table 3: Script samples in our experiment.

in response to various events. We treat the different robot
behavior strategies as our independent variable, and evaluate
them in terms of the quality of the service, the perceptions of
robots, and user experience.

Hypotheses
Our engagement inference model can detect and disambiguate
dynamics in human engagement shifts, based on which robots
can respond in different manners. Previous works show that
in Human-Human Interaction exercising engagement aware-
ness behaviors can make conversations smoother and more
comfortable [32]. Therefore, we hypothesize that:

H1. Robots with our engagement inference model, regardless
of their actual styles of behaviors, can better mitigate commu-
nication break downs caused by peripheral computing devices.
More specifically, human partners will (H1a) experience sig-
nificantly less information loss, (H1b) be significantly easier

to resume the conversation after using the computing devices,
and (H1c) feel that the conversation is significantly smoother
overall.

H2. Robots with our engagement inference model in general
are (H2a) perceived to be significantly more competent as an
assistant in work settings than those without, and (H2b) are
significantly more welcomed for future usage.

For manipulation check of our engagement awareness model,
we ask people if the robot assistants are aware of their changes
of attention on a 7-point Likert scale.

We further hypothesize that different manners of engagement
inference robot behaviors can result in different human percep-
tions of the robots. More specifically:

H3. Compared to those with explicit strategy, robots using
implicit strategy are perceived to be significantly (H3a) less
annoying, (H3b) less controlling, (H3c) less aggressive, (H3d)
more considerate, (H3e) more appropriate, and (H3f ) more
polite.

In our study, we measure these different aspects (derived from
[37], [19], [40], [36]) on a 7-point Likert scale.

Experiment Design and Setup
In our experiment, an Aldebaran Nao 4 serves as the robot
agent, and we utilize its embedded functions to detect head
pose, gaze, and voice. In addition, we use the default imple-
mentation as the baseline for the unawareness mode. In the
other two engagement sensitive modes, the robot captures the
social signals from the participant through its visual and audio
sensors, and sends the data via WiFi to a back-end laptop
(Intel CPU 2.3GHz, 10GB RAM, Ubuntu 14.04) which runs

4https://www.ald.softbankrobotics.com/en/cool-robots/nao
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our algorithms to estimate the engagement status. Based on
the results, the laptop sends command to the robot to adjust its
behaviors according to the predefined strategy on the fly.

During the experiment, the participant is asked to sit up straight
in a cubic with the Nao robot standing on the table on their
right hand side. To the participant’s left, a laptop (MacBook
Pro with Retina display 13", Intel CPU 2.7GHz, 8GB RAM)
serves as the peripheral computing device. As shown in Fig-
ure 1. The Nao robot is roughly the same height as the partici-
pant in sitting position, and the distance between the robot and
its partner is between 0.4m and 1.5m for better social signal
detection. Note that the distance may vary as the participant
may change the body orientation and/or posture. The Nao
robot can rotate, tilt and bend its head and upper body actively,
and can also gesture with its hands. However, we do not allow
the robot to walk around on the table to avoid unintentional
interference with the conversations or tasks due to sudden
movements.

The study consists of three sessions, each involving a different
version of the robot (explicit, implicit, and unawareness) in
one of the three different scenarios (Morning Report, Arrange
Meetings, and Daily Summary). In each session, while the
participants are interacting with the robot in English, an ex-
perimenter sitting in another cubic sends two requests for the
participants to complete from the back-end computer to the
laptop on the participant side via a social messaging applica-
tion at random. On the participants’ machine, the requests
automatically pop up with a notification sound. The requests
can be relevant (e.g., “describe the professor as much as pos-
sible”) or irrelevant (e.g., “what’s your favorite app in your
mobile phone?’) to the conversation at the time.

With participants’ consent, we record the whole experiment
by a Panasonic video camera.

Participants
We recruit 27 volunteers from a local university (seven females,
average age: 24, SD: 1.72) by word-of-mouth and flyers. Ac-
cording to the pre-screening survey, 10 of them report that they
have some experiences of interacting with physical or virtual
conversational robots, such as Apple Siri 5. All participants
are university students with different education background.
They all have TOEFL score above 95 or IELTS score above
7.0, which indicates that they have no problem communicating
with the robot in English.

Procedure
After obtaining the consents from participants, we introduce
the procedure of the experiment. Each participant takes part
in three sessions in a counterbalanced order. In each session,
the robot first introduces itself, has some small talks with the
participants, and then start the task-related topics. During the
conversations, the participant attends to the laptop on the side
twice upon the arrival of requests through the messaging appli-
cation. Each session lasts for less than 10 minutes depending
on individual speed of completing the requests. At the end of
each session, we ask the participant to fill out a questionnaire
5http://www.apple.com/ios/siri/

Figure 6: Means and standard errors of the service evaluation
of our robot assistants on a 7-point Likert scale (+: .05 < p <
.1, *: p < .05, **: p < .01)

to rate the service performance of the robot assistant. Upon the
completion of the three sessions, the participant compares and
rates the three versions of robots in terms of perceptions and
user experience on a 7-point Likert scale, and the participant
can review the video recordings if needed. In the end, we
conduct an in-depth interview with the participant to find out
more about the feelings regarding the robot.

During the pilot study, we detected some transition errors in
our model, mostly caused by face/gaze tracking failures. To
mitigate this issue, in the experiment, we program the robot
to remind the participant to sit up straight or move closer to
it, if failed to detect any face or estimate the head pose. In
the meantime, we keep monitoring our system log and mark
any misbehavior of the robot without interrupting the ongoing
experiment. In the post-study interview, we ask additional
questions about the user’s perceptions and reactions to these
incidents to help improve the performance of our system.

ANALYSIS AND RESULTS
We summarize the statistical analyses and interview results, in
terms of participants’ perceptions of the service and the robot.

Manipulation Check
The manipulation check for engagement awareness conditions
shows that the manipulation is effective (repeated measures
MANOVA, F(2, 52) = 37.02, p < 0.01, η2 = .59). The robots
with our engagement model are indeed perceived as being
able to detect participants’ engagement dynamics (explicit:
M = 5.41, S D = 1.65; implicit: M = 5.67, S D = 1.41) than
the one without (M = 2.67, S D = 1.52); Bonferroni post-hoc
test p < 0.05.

Service Evaluation
Figure 6 shows the robot’s ability to avoid communication
break downs due to the presence of peripheral computing
devices.

The engagement-aware robots are significantly more capa-
ble of minimizing information loss when interruptions occur
during their conversations with the human partners than the in-
sensitive one (repeated measures MANOVA, F(2, 52) = 8.51,
p < 0.01, η2 = .25; H1a accepted). The participants feel
that both the explicit robot (M = 4.96, S D = 1.65) and

Robots at Work & Home CHI 2017, May 6–11, 2017, Denver, CO, USA

562

http://www.apple.com/ios/siri/


Figure 7: Means and standard errors of the user experience evaluation of our robot assistants on a 7-point Likert scale (+:
.05 < p < .1, *: p < .05, **: p < .01)

the implicit robot (M = 5.37, S D = 1.55) deliver signifi-
cantly more information than the default unawareness one
(M = 3.85, S D = 1.83); Bonferroni post-hoc test p < 0.05.
There are no significant differences between the two behavior
strategies.

Similarly, participants suggest that they can recover from the
interruptions and resume the conversation significantly more
easily with the robots running our engagement inference model
(repeated measures MANOVA, F(2, 52) = 13.75, p < 0.01,
η2 = .35; H1b accepted). Both the explicit ( M = 4.74, S D =
1.48) and the implicit (M = 5.26, S D = 1.43) robots can
resolve uncoupling significantly better than the baseline robot
(M = 3.37, S D = 1.45); Bonferroni post-hoc test p < 0.05.

Furthermore, the conversations with engagement-aware robots
are significantly smoother than that with the ordinary robot
(F(2, 52) = 3.61, p < 0.05, η2 = .12; H1c accepted). Bon-
ferroni post-hoc check shows that handling attention shift
using implicit strategy (M = 5.44, S D = 1.22) can lead to
marginally smoother conversations than the baseline robot
(M = 4.56, S D = 1.63; p = 0.07). But the effect of the
explicit strategy (M = 5.11, S D = 1.01) is not significant.

In terms of competence and desirability, results show that the
participants view the robots with our engagement inference
model as more competent than the ones without. (repeated
measures MANOVA, F(2, 52) = 8.01, p < 0.01, η2 = .24;
H2a accepted) Bonferroni post-hoc test suggests that while
behavior strategies have no significant impact on the perceived
competence, participants feel that the robots with our en-
gagement model (implicit: M = 4.93, S D = 1.21; explicit:
M = 4.85, S D = 1.43) are significantly better at their jobs
than the ones without (M = 3.78, S D = 1.72; p < 0.05).

Similarly, participants prefer working with the engagement-
aware robots in the future, significantly more than the baseline
one (repeated measures MANOVA, F(2, 52) = 3.25, p <
0.05, η2 = .11). Bonferroni post-hoc test further reveals that
people prefer significantly more the implicit robot (M = 5.63,
S D = 1.28) than the baseline robot (M = 4.89, S D = 1.63;
p < 0.05). But the difference between the explicit robot

(M = 5.37, S D = 1.45) and the baseline one is not significant.
Therefore, H2b is only partially accepted.

Robot Evaluation and User Experience
To further explore the underlying rationales of participants’
preferences, we ask them to compare the explicit and implicit
robots in terms of annoyance, controlling, aggression, consid-
eration, appropriateness, and politeness on a 7-point Likert
scale. The statistical results are shown in Figure 7.

In general, participants find the explicit robot to be (M = 5.26,
S D = 1.20) significantly more annoying than the implicit
one (M = 2.96, S D = 1.26); repeated measures MANOVA,
F(2, 52) = 17.76, p < 0.01, η2 = .41; Bonferroni post-hoc
test p < 0.01 (H3a accepted). This is also confirmed in the
post-study interviews:

“I like the first one (implicit) the most. It is more pa-
tient. The last one (explicit) is too annoying as it kept
talking when I was responding to the requests. It is quite
noisy. ... I have no special feeling for the second one
(unawareness). ... ” – P12 (Male, age: 26)

Participants feel that the explicit robot (M = 4.30, S D =
1.46) is significantly more controlling than the implicit one
(M = 3.37, S D = 1.25); repeated measures MANOVA,
F(2, 52) = 3.45, p < 0.05, η2 = .12; Bonferroni post-hoc
test p < 0.05 (H3b accepted). Some participants commented
in the interview that:

“It (explicit) always said “Are you listening to me?” It
persisted until I finally turned back to it. The other robot
(implicit) just waited for me.” – P9 (Male, age: 24)

Similarly, the explicit robot (M = 5.04, S D = 1.19) is more
aggressive than the implicit one (M = 2.81, S D = 1.18);
repeated measures MANOVA, F(2, 52) = 16.40, p < 0.01,
η2 = .39; Bonferroni post-hoc test p < 0.05 (H3c accepted).

Overall, resolving ambiguity and handling disengagement in
the implicit manner (M = 4.67, S D = 1.47) are perceived to
be significantly more considerate than that in the explicit man-
ner (M = 1.93, S D = 0.62); repeated measures MANOVA,
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F(2, 52) = 78.37, p < 0.01, η2 = .75; Bonferroni post-hoc test
p < 0.01 (H3e accepted). One participant mentioned in the
interview that:

“I really appreciate the robot (implicit) giving me time
and space to work on the computer, very thoughtful.” –
P20 (Female, age: 23)

Participants thinks the implicit robot (M = 4.67, S D = 1.21)
to be significant more socially appropriate than the explicit
one (M = 2.26, S D = 0.94); repeated measures ANOVA,
F(2, 52) = 56.85, p < 0.01, η2 = .69; Bonferroni post-hoc
test p < 0.01 (H3e accepted). Similar effects are found in
the politeness rating. Participants think the the implicit robot
(M = 4.67, S D = 1.30) to be more polite than the explicit
one (M = 2.15, S D = 0.66); repeated measures MANOVA,
F(2, 52) = 58.97, p < 0.01, η2 = .69; Bonferroni post-hoc test
p < 0.01 (H3f accepted).

In the interviews, some participants also mentioned the fol-
lowing points,

“I like the last robot (implicit) manner of speaking. It
sounds more polite than others, and it handled the inter-
ruption quite tactfully ...” – P21 (Male, age: 24)

“The last robot (unawareness) simply rushes the conversa-
tions. The second robot (implicit) instead takes its time
and waits for me, which is respectful. ... ” – P19 (Male,
age: 23)

In summary, our engagement inference model is effective in
HRI with peripheral computing devices situated. Our model
can detect the engagement state transitions of human partners,
and adjust the weights of different cues (i.e., head pose, gaze,
etc.) to resolve potential ambiguities. This can help the robots
conduct smoother and more effective conversations. In ad-
dition, although the two versions of our engagement-aware
robots of different handling strategies achieve similar service
performance and competence ratings, participants have a more
positive experience with the implicit design. They report the
implicit robot more considerate and polite, which shows that
robot behavior design is critical to successful HRI.

DISCUSSION
In this section, we discuss some insights derived from our
study and the limitations of this work.

Implications for Design
Based on data analysis and interview results, we summarize
some implications for designing engagement-aware robot be-
haviors.

Pausing to Acknowledge Computing Devices’ Involvement

When robot assistants detect their human partners’ attention
shift to other devices, regardless of the actual purposes, it is
better for the robots to pause for a short moment to acknowl-
edge the event. Then the robots can take subsequent actions
according to certain behavior strategies. This gives the partici-
pants the sense that the robots are aware of the attention shift,
which may result in more effective communication. In addi-
tion, most of the participants report that the implicit robots are

more “considerate” and “polite” and thus prefer the implicit
strategy for HRI.

Robot Behaviors Should Be Context-aware

After a brief pause when the attention shift of human part-
ners is detected, whether robots should continue waiting or
should need to urge the human partners to re-enter the con-
versation could depend on various contextual factors of the
HRI, including task-related factors e.g., relevance and urgency,
user-related factors e.g., cognitive capacity and emotion, and
environment-related factors e.g., existence of other distrac-
tions. For example, when the human and robot team is work-
ing on an urgent task, it is necessary for the robot to attract its
human partner proactively to quickly recover the conversation
from interruption. If the task is not as time critical, it might
be better for the robot to wait, which could result in smoother
and more comfortable communication.

Robot Behaviors Should Be Intent Sensitive

Robots should be sensitive of their human partners’ intentions,
which might be inferred through the interaction. For example,
when robots keep requesting their human partners’ attention
back to the current interaction while the partners persistently
ignore the requests, robots should respect the partners’ intents
and adjust their behavior strategies.

Consider Potential Negative Experience Caused by Robots

Some participants prefer the unawareness strategy even though
they cannot follow up with the conversation. One possible
reason may be the “guilty feeling” of the participants. When
robots say “are you listening to me?” (explicit) or “you are do-
ing other tasks. I will wait for you.” (implicit), these speeches
may make partners feel guilty as if they had caused some
troubles. Therefore, we suggest that the potential negative
emotional experiences caused by robots’ behaviors should
be considered when designing engagement-aware robots. In
addition, we identify two other types of behaviors that might
lead to negative feelings from our participants’ feedback.

Repetitive behaviors. Some participants mention that the
explicit strategy is quite annoying as the robot keeps saying
similar speeches like “are you listening to me?”. Although
we designed several different statements to regain participants’
attention and alternate them randomly during conversation,
participants are still likely to experience the repetitive requests
if they do not show responses to the robot for a long time.
Therefore, having a larger and more expressive vocabulary is
needed to avoid the negative experience.

Speaking in constant pace. Some participants say that the
unawareness robot speaks too fast, and they find it hard to
follow the conversation. In fact, all the three versions of robots
have same talking speed. However, the explicit and implicit
strategies may change the paces based on the interactions,
which may make the conversation more comprehensible and
engaging.

Limitations
Our work has several limitations. First, our experiment setup
contains only one laptop as the peripheral computing device.
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However, several participants did use their phones unexpect-
edly during the experiments. Although our inference model
successfully detects these phone use events, we need more sys-
tematic study on multi-device situations. Second, our current
engagement inference model cannot handle the face occlusion
problem. When participants rest their chins on hands, it is
difficult for the face detector embedded in the Nao robot to lo-
cate their faces and estimate the head poses accurately, hence
it is hard to infer the engagement status. Similarly, the face
detector in the Nao robot cannot handle large face rotation
angles, which can result in unsatisfactory estimation accuracy
of our engagement inference model. Third, we do not consider
different participants’ personalities, and only use fixed robot
behaviors for different strategies. If robot assistants can recog-
nize human personality and respond accordingly, smoother and
more effective information communication can be expected.
Fourth, we do not differentiate active engagement from pas-
sive engagement. In this study, there is no specific purpose
for the interaction. Hence, the participants listen passively to
the robot during interaction for most of the time. However,
they may turn into active listeners if asked to complete a quiz
based on what the robot has said, and thus are likely to behave
rather differently. We will further investigate the effects of
these two modes in follow-up studies. Fifth, we restrict the
robot’s mobility to avoid unintended interference. However,
if given more freedom, the robot could try out more expres-
sive engagement handling strategies by incorporating speech,
gesture, body languages, and movement in space. Last, in our
experiment, the conversational turns between the robot and hu-
mans are not balanced, and the dialog system we employ can
only handle small talks. The robot is still far from satisfactory
to carry out fluent conversations like a real human.

CONCLUSION AND FUTURE WORK
We propose a new real-time engagement inference model by
distinguishing engagement level in a find-grained scale. Based
on the proposed model, we investigate two different robot
behavior strategies. Our experiment results show that our en-
gagement inference model and behavior strategies are useful
and effective during Human-Robot Interaction when peripheral
computing devices are considered. We also find it meaningful
to make robots wait for the participants when their attention
is not on the current conversation. Future works could in-
clude improving the performance of our engagement inference
model in more scenarios and deploying our system in the real
HRI.
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